

Neoplasia Molecular basis of cancer

Professor Tamanna Choudhury HOD, Pathology MCWH

References:

- Robbins & Cotran Pathologic Basis of Disease- 9th edition
- IMAGES- Above mentioned book & internet

Molecular Basis of Cancer

- Evidence for the **genetic origin** of cancer have been building up for over the decades
- Genetic damage may be
- > Acquired (environmental agents) or may be

> Inherited

Molecular Basis of Cancer

- Non- lethal genetic damage underlies carcinogenesis
- A tumour is formed by the clonal expansion of a single genetically damaged precursor cell (monoclonal)

Types of cellular genes involved in Molecular Carcinogenesis

- **Growth promoting proto- oncogenes**
- Growth inhibiting tumour suppressor genes
- Genes regulating apoptosis
- > DNA repair genes

These are the principal targets of cancer causing mutations

Molecular Basis of Cancer Regulatory genes

PROTO- ONCOGENES

- Normal cellular genes
- Whose products promote cell proliferation

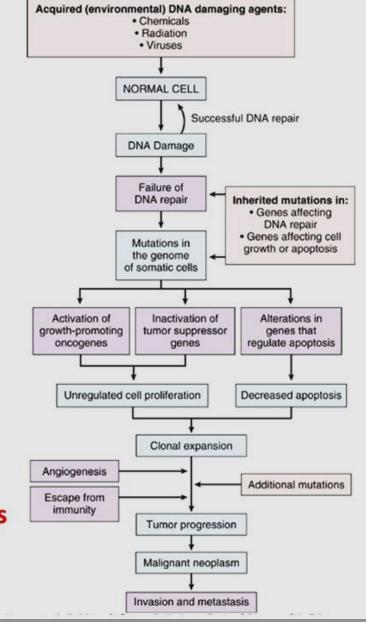
ONCOGENES

- Genes that promote autonomous cell growth in cancer cells
- Mutated or overexpressed versions of proto-oncogenes
- that function autonomously

ONCOPROTEIN

 A protein products of oncogenes that drives increased cell proliferation

Molecular Basis of Cancer

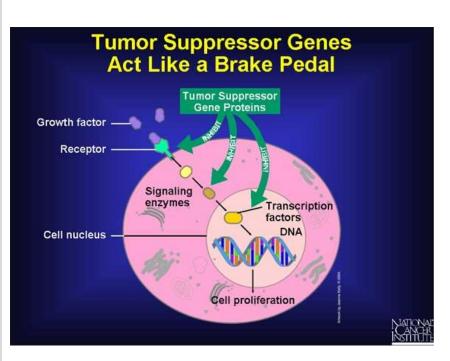

Non lethal genetic damage

Clonal expansion of genetically damaged cells

Involved genes

- Proto-oncogenes,
- Tumor suppressor genes,
- Genes regulating apoptosis,
- DNA repair genes

Carcinogenesis is a multi-step process

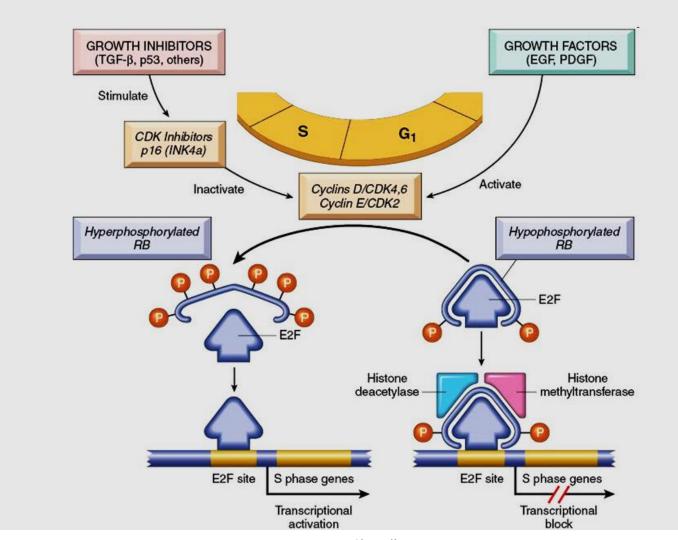

Selected Oncogenes, Mode of Activation and Associated Human Tumours

Category	Proto-Oncogene	Mode of Activation	Associated Human Tumour	
GROWTH FACTORS				
PDGF beta	PDGFB	Overexpression	Astrocytoma	
FGF	HST1, FGF3	Overexpression, Amplification	Osteosarcoma, stomach ca, bladder ca, breast ca, melanoma	
TGFα	TGFA	Overexpression	Astrocytoma	
HGF	HGF	Overexpression	HCC, thyroid ca	
GROWTH FACTOR RECEPTORS				
EGF receptor family	ERBB1 ERBB2	Mutation Amplification	Adenocarcinoma lung Breast carcinoma	
PDGF receptor	PDGFRB	Overexpression	Gliomas, leukaemias	

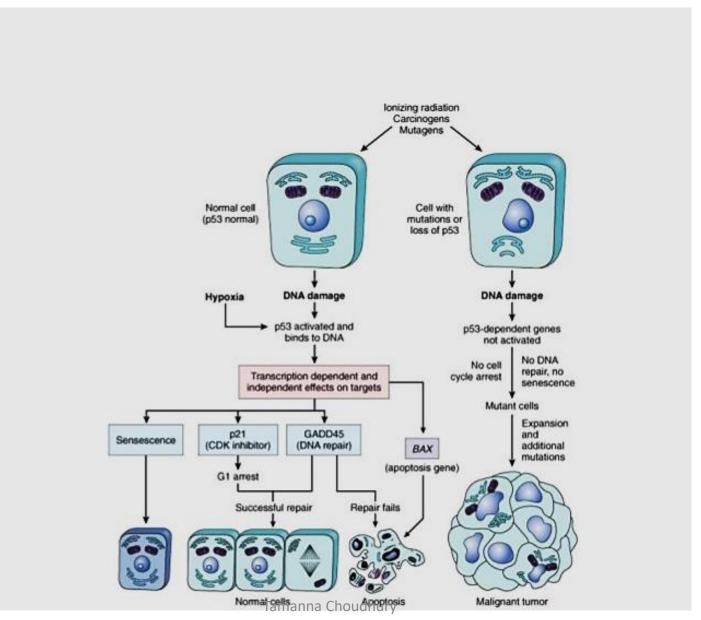
Tumour suppressor gene

- Tumour suppressor genes apply brakes to cell proliferation
- They act as check points that prevent uncontrolled growth
- **Negatively** regulate cellular proliferation
- Abnormalities in these genes lead to failure of growth inhibition

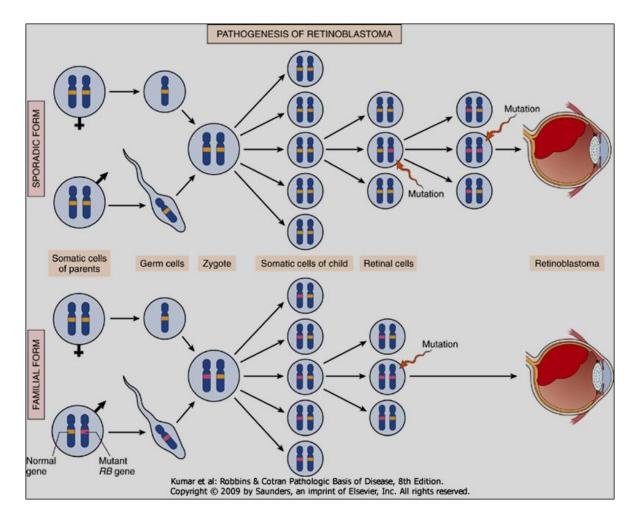
Selected Tumour Suppressor Genes and associated Familial Syndromes


Gene	Familial syndromes	Sporadic cancers
APC	Familial colonic polyps and carcinoma	Carcinoma stomach, colon, pancreas
E-Cadherin	Familial gastric carcinoma	Gastric carcinoma, lobular breast carcinoma
CDKN2A	Familial melanoma	Pancreatic, breast, oesophageal carcinoma, melanoma
RB	Familial retinoblastoma syndrome (retinoblastoma, osteosarcoma, other sarcoma)	Retinoblastoma, osteosarcoma
NF1	Neurofibromatosis type 1 (neurofibroma, and MPNST)	Neuroblastoma
NF2	Neurofibromatosis type 2 (acoustic schwannoma and meningioma)	Schwannoma and meningioma
WT1	Familial Wilms tumour	Wilms tumour and certain leukaemia
PTEN	Cowden syndrome (benign skin, GI, and CNS growth, breast, endometrial and thyroid carcinoma)	Diverse cancers
VHL	Von Hippel Lindau syndrome(cerebellar hemangioblastoma, retinal angioma, RCC)	RCC
ТР53	Li- Fraumeni syndrome	Most human cancers
BRCA1,BRCA2	Familial breast and ovarian carcinoma; carcinoma of male breast; CLL	Rare
STK11 4/10/2020	Peutz-Jegher syndrome(GI polyps, GI cancers, pancreatic carcinoma, other carcinomas) Tamanna Choudhury	Diverse carcinomas

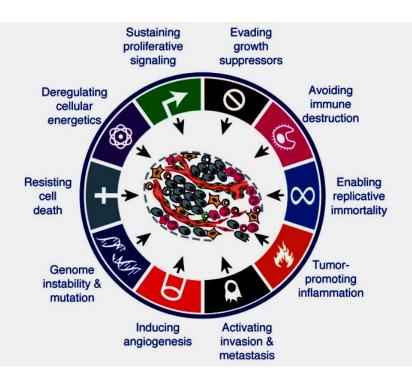
Tumour suppressor genes


- RB governor of the cell cycle
- P53- guardian of the genome

The role of RB gene in regulating the cell cycle


Tamanna Choudhury

The role of p53 in maintaining genomic integrity


Two hit hypothesis Pathogenesis of Retinoblastoma

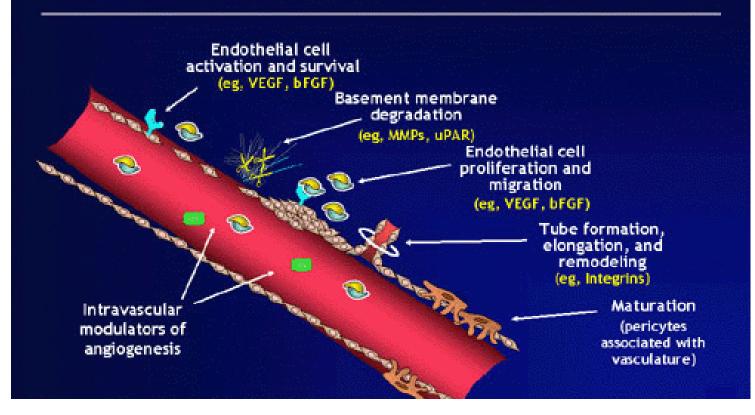
HALLMARKS of CANCER Attributes of malignancy

- **1.** Self sufficiency in growth signals
- 2. Insensitivity to growth inhibitory signals
- 3. Altered cellular metabolism
- 4. Evasion of apoptosis
- 5. Limitless replicative potential (immortality)
- 6. Sustained angiogenesis
- 7. Ability to invade and metastasize
- 8. Ability to evade the host immune response

Host blood vessel growth

□ Vascularization of tumours is essential for their growth

Controlled by the balance between angiogenic and antiangiogenic factors produced by tumour and stromal cells


Even if a tumour possesses all the genetic aberrations that are required for malignant transformation it cannot enlarge beyond 1 to 2 mm in diameter
Unless it has the capacity to induce angiogenesis

- Most tumours do not initially induce angiogenesis
- Thus remain small or in situ
- The subsequent *angiogenic switch* involves either production of angiogenic factors or loss of inhibitors

The Angiogenic Process

Stimulates angiogenesis

Inhibits angiogenesis

VEGF Basic Fibroblastic Growth Factor

Thrombospondin

- Neovascularization has a dual effect on tumour growth
- Perfusion supplies needed **nutrients and oxygen**
- The newly formed endothelial cells stimulate growth of adjacent tumour cells by secreting growth factors

Today's lecture topic included

- Molecular basis of cancer
- Proto oncogenes
- Oncogenes
- Tumour suppressor genes
- P53 gene
- Rb gene
- Hallmarks of cancer
- Tumour angiogenesis

